5 research outputs found

    The Right (Angled) Perspective: Improving the Understanding of Road Scenes Using Boosted Inverse Perspective Mapping

    Full text link
    Many tasks performed by autonomous vehicles such as road marking detection, object tracking, and path planning are simpler in bird's-eye view. Hence, Inverse Perspective Mapping (IPM) is often applied to remove the perspective effect from a vehicle's front-facing camera and to remap its images into a 2D domain, resulting in a top-down view. Unfortunately, however, this leads to unnatural blurring and stretching of objects at further distance, due to the resolution of the camera, limiting applicability. In this paper, we present an adversarial learning approach for generating a significantly improved IPM from a single camera image in real time. The generated bird's-eye-view images contain sharper features (e.g. road markings) and a more homogeneous illumination, while (dynamic) objects are automatically removed from the scene, thus revealing the underlying road layout in an improved fashion. We demonstrate our framework using real-world data from the Oxford RobotCar Dataset and show that scene understanding tasks directly benefit from our boosted IPM approach.Comment: equal contribution of first two authors, 8 full pages, 6 figures, accepted at IV 201

    Generating All the Roads to Rome: Road Layout Randomization for Improved Road Marking Segmentation

    Full text link
    Road markings provide guidance to traffic participants and enforce safe driving behaviour, understanding their semantic meaning is therefore paramount in (automated) driving. However, producing the vast quantities of road marking labels required for training state-of-the-art deep networks is costly, time-consuming, and simply infeasible for every domain and condition. In addition, training data retrieved from virtual worlds often lack the richness and complexity of the real world and consequently cannot be used directly. In this paper, we provide an alternative approach in which new road marking training pairs are automatically generated. To this end, we apply principles of domain randomization to the road layout and synthesize new images from altered semantic labels. We demonstrate that training on these synthetic pairs improves mIoU of the segmentation of rare road marking classes during real-world deployment in complex urban environments by more than 12 percentage points, while performance for other classes is retained. This framework can easily be scaled to all domains and conditions to generate large-scale road marking datasets, while avoiding manual labelling effort.Comment: presented at ITSC 201

    Initial sequencing and analysis of the human genome

    No full text
    corecore